Qualitative Analysis for Nonlinear Differential Equations Math 102 Section 107

Krishanu Sankar

November 6, 2017

 $P' = aP - bP^2$

Q1. For the differential equation $P' = aP - bP^2$, what are the *steady states*?

 $P' = aP - bP^2$

Q1. For the differential equation $P' = aP - bP^2$, what are the *steady states*?

A.
$$P(t) = 0$$
 and $P(t) = \frac{a}{b}t$
B. $t = 0$ and $t = \frac{a}{b}$
C. $P(t) = 0$ and $P(t) = \frac{a}{b}$
D. $P(t) = e^{0t}$ and $P(t) = e^{\frac{a}{b}t}$

 $P' = aP - bP^2$

Q1. For the differential equation $P' = aP - bP^2$, what are the *steady states*?

A.
$$P(t) = 0$$
 and $P(t) = \frac{a}{b}t$
B. $t = 0$ and $t = \frac{a}{b}$
C. $P(t) = 0$ and $P(t) = \frac{a}{b}$
D. $P(t) = e^{0t}$ and $P(t) = e^{\frac{a}{b}t}$

$$P' = aP - bP^2$$

Q2. Consider the graph of $\frac{dP}{dt}$ vs. *P*. The local max of this parabola corresponds to

$$P' = aP - bP^2$$

Q2. Consider the graph of $\frac{dP}{dt}$ vs. *P*. The local max of this parabola corresponds to

A. When $P = \frac{a}{2b}$, the population doesn't change.

- B. When $P = \frac{a}{2b}$, the population is growing at the maximum possible rate.
- C. At time $t = \frac{a}{2b}$, the population is growing at the maximum possible rate.
- D. Confused, help!

$$P' = aP - bP^2$$

Q2. Consider the graph of $\frac{dP}{dt}$ vs. *P*. The local max of this parabola corresponds to

A. When $P = \frac{a}{2b}$, the population doesn't change.

- B. When $P = \frac{a}{2b}$, the population is growing at the maximum possible rate.
- C. At time $t = \frac{a}{2b}$, the population is growing at the maximum possible rate.
- D. Confused, help!

 $P' = aP - bP^2$

Q3. Given that P' is a function of P, we can conclude that if P(t) is a solution to the differential equation, then

$$P' = aP - bP^2$$

Q3. Given that P' is a function of P, we can conclude that if P(t) is a solution to the differential equation, then

- A. So is $C \cdot P(t)$ for any constant C.
- B. So is P(t) + C for any constant C.
- C. So is P(t+C) for any constant C.
- D. Confused, help!

 $P' = aP - bP^2$

Q3. Given that P' is a function of P, we can conclude that if P(t) is a solution to the differential equation, then

- A. So is $C \cdot P(t)$ for any constant C.
- B. So is P(t) + C for any constant C.
- C. So is P(t+C) for any constant C.
- D. Confused, help!