Qualitative Analysis for Nonlinear Differential Equations Math 102 Section 107

Krishanu Sankar

November 6, 2017

$P^{\prime}=a P-b P^{2}$

Q1. For the differential equation $P^{\prime}=a P-b P^{2}$, what are the steady states?

$P^{\prime}=a P-b P^{2}$

Q1. For the differential equation $P^{\prime}=a P-b P^{2}$, what are the steady states?
A. $P(t)=0$ and $P(t)=\frac{a}{b} t$
B. $t=0$ and $t=\frac{a}{b}$
C. $P(t)=0$ and $P(t)=\frac{a}{b}$
D. $P(t)=e^{0 t}$ and $P(t)=e^{\frac{a}{b} t}$

$P^{\prime}=a P-b P^{2}$

Q1. For the differential equation $P^{\prime}=a P-b P^{2}$, what are the steady states?
A. $P(t)=0$ and $P(t)=\frac{a}{b} t$
B. $t=0$ and $t=\frac{a}{b}$
C. $P(t)=0$ and $P(t)=\frac{a}{b}$
D. $P(t)=e^{0 t}$ and $P(t)=e^{\frac{a}{b} t}$
$P^{\prime}=a P-b P^{2}$
Q2. Consider the graph of $\frac{d P}{d t}$ vs. P. The local max of this parabola corresponds to

$P^{\prime}=a P-b P^{2}$

Q2. Consider the graph of $\frac{d P}{d t}$ vs. P. The local max of this parabola corresponds to
A. When $P=\frac{a}{2 b}$, the population doesn't change.
B. When $P=\frac{a}{2 b}$, the population is growing at the maximum possible rate.
C. At time $t=\frac{a}{2 b}$, the population is growing at the maximum possible rate.
D. Confused, help!

$P^{\prime}=a P-b P^{2}$

Q2. Consider the graph of $\frac{d P}{d t}$ vs. P. The local max of this parabola corresponds to
A. When $P=\frac{a}{2 b}$, the population doesn't change.
B. When $P=\frac{a}{2 b}$, the population is growing at the maximum possible rate.
C. At time $t=\frac{a}{2 b}$, the population is growing at the maximum possible rate.
D. Confused, help!

$P^{\prime}=a P-b P^{2}$

Q3. Given that P^{\prime} is a function of P, we can conclude that if $P(t)$ is a solution to the differential equation, then

$P^{\prime}=a P-b P^{2}$

Q3. Given that P^{\prime} is a function of P, we can conclude that if $P(t)$ is a solution to the differential equation, then
A. So is $C \cdot P(t)$ for any constant C.
B. So is $P(t)+C$ for any constant C.
C. So is $P(t+C)$ for any constant C.
D. Confused, help!

$P^{\prime}=a P-b P^{2}$

Q3. Given that P^{\prime} is a function of P, we can conclude that if $P(t)$ is a solution to the differential equation, then
A. So is $C \cdot P(t)$ for any constant C.
B. So is $P(t)+C$ for any constant C.
C. So is $P(t+C)$ for any constant C.
D. Confused, help!

